Risks of Data Science Projects - A Delphi Study
نویسندگان
چکیده
Risk is one of the most crucial components a project. Its proper evaluation and treatment increase chances project’s success. This article presents risks in Data Science projects, assessed through study conducted with Delphi technique, to answer question, "What are projects". The allowed identification specific related data science however it was possible verify that over half mentioned similar other types IT projects. paper describes research from expert selection, risk analysis, first conclusions.
منابع مشابه
a study on insurer solvency by panel data model: the case of iranian insurance market
the aim of this thesis is an approach for assessing insurer’s solvency for iranian insurance companies. we use of economic data with both time series and cross-sectional variation, thus by using the panel data model will survey the insurer solvency.
a study of translation of english litrary terms into persian
چکیده هدف از پژوهش حاضر بررسی ترجمه ی واژه های تخصصی حوزه ی ادبیات به منظور کاوش در زمینه ی ترجمه پذیری آنها و نیز راهکار های به کار رفته توسط سه مترجم فارسی زبان :سیامک بابایی(1386)، سیما داد(1378)،و سعید سبزیان(1384) است. هدف دیگر این مطالعه تحقیق در مورد روش های واژه سازی به کار رفته در ارائه معادل های فارسی واژه های ادبی می باشد. در راستای این اهداف،چارچوب نظری این پژوهش راهکارهای ترجمه ار...
15 صفحه اولRisks and Hidden Costs: A Study of 26 Outsourced Projects
Despite the current unfavorable outlook of the larger economy, there has been a steady increase in information systems outsourcing by organizations which is projected to reach $97.9 billion in 2012. Ordinarily, organizations outsource their software projects to avoid the risks associated with developing the software internally and to control costs. However, a study of twenty six outsourced proj...
متن کاملa study on construction of iranian life tables: the case study of modified brass logit system
چکیده ندارد.
15 صفحه اولData Science Methodology for Cybersecurity Projects
Cybersecurity solutions are traditionally static and signature-based. The traditional solutions along with the use of analytic models, machine learning and big data could be improved by automatically trigger mitigation or provide relevant awareness to control or limit consequences of threats. This kind of intelligent solutions is covered in the context of Data Science for Cybersecurity. Data Sc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Procedia Computer Science
سال: 2022
ISSN: ['1877-0509']
DOI: https://doi.org/10.1016/j.procs.2021.12.100